Moestopo International Review on Societies, Humanities, and Sciences (MIRSHuS)

Vol. 5, No. 2 (2025) pp. 192-204

ISSN: 2775-9601

EFFECTIVENESS OF ROSELLA ON BONE REPAIR

Ridzky Rainrisa Arief

Dentistry Study Program, Prof. Dr. Moestopo University (Beragama)

Riska Farida Nurazizah

Dentistry Study Program, Prof. Dr. Moestopo University (Beragama)

Safina Salsabila Wardhana

Dentistry Study Program, Prof. Dr. Moestopo University (Beragama)

Evie Lamtiur Pakpahan

Department of Orthodontics, Faculty of Dentistry, Prof. Dr. Moestopo University (Beragama)

ARTICLE INFO

Article History:

received: 04/12/2024 revised: 03/02/2025 accepted: 11/02/2025

Keywords:

Roselle, Hibiscus Sabdariffa L., bone repair, bone healing, bone remodeling

יוטם

10.32509/mirshus.v5i2.105

ABSTRACT

Background: Bone destruction can occur as a result of pathological processes that destroy bone components. The healing process from bone destruction can take time due to several factors such as the size and shape of the damage, metabolic factors, hormones, nutrition, and other factors. One of the plants that can repair bones is Rosella. Rosella flower (Hibiscus sabdariffa L) is a medicinal plant that grows in tropical and subtropical countries such as Saudi Arabia, India, Thailand, Malaysia, and Indonesia. Hibiscus sabdariffa L contains saponins, tannins, phenols, flavonoids, triterpenoids, and glycosides that can inhibit alveolar bone destruction. **Purpose:** To explain the effectiveness of Rosella (Hibiscuss Sabdariffa L.) on bone repair Methods: Journals were analyzed and accessed via Google Scholar, NCBI, and EBSCO from 2017 to 2024. Result: From 20 reference that have been found, after being analyzed based on inclusion and exclusion criteria, there is 20 reference has been choosed and 5 reference excluded. Conclusion: Rosella contain flavonoids that can promote the bone healing process, flavonoids can protect against bone loss by regulating signaling pathways that improve osteoblast function, by reducing the effects of oxidative stress or chronic low-level inflammation.

INTRODUCTION

The alveolar bone, also called the alveolar process, is a part of the jawbone that supports the teeth and the mouth's function (Omi & Mishina, 2022). Alveolar bone is a dynamic and vital tissue. Normally, alveolar bone is subjected to mechanical stimulation and undergoes a continuous remodeling cycle due to the coordinated activity of two important cell types: osteoblasts, osteocytes,

and bone-lining cells, and bone-resorption cells, such as osteoclasts (Huang et al., 2020).

Bone damage is a serious disease that can occur due to pathological processes, which can be caused by extensive trauma or infection. Healing of bone damage is the process of bone tissue reconstruction. Most bone damage can heal spontaneously under a suitable physiological environment because of the bone's regenerating ability.

^{*}Correspondence: rainrisa.ridzky@gmail.com

The bone healing process takes a long time and the formation of new bone is slow due to the size of the wound, the wound environment, metabolic factors, hormones, nutrition, and stress (Majeed & Ghani, 2018).

Rosella flowers (Hibiscus sabdariffa L.) contain saponins, tannins, phenols, flavonoids, triterpenoids, and glycosides that can inhibit alveolar bone damage (Dharma Utama et al., 2019). Rosella has many functions (Ramadhan et al., 2021). Rosella flowers (Hibiscus sabdariffa L.) High calcium can activate bone loss, while certain substances in rosella flowers are able to rejuvenate the body cells and protect the body from infection of germs and viruses. The function of calcium helps the density of bone density. Calcium in bone has two functions as an integral part of bone structure and as a storage place of calcium.(Dharma Utama et al., 2019)

The rosella flower (Hibiscus sabdariffa L.) is an ornamental plant with thick flower petals that belongs to the Hibiscus or Malviceae family (Nasri & Imran, 2017). The herbal plant rosella or Hibiscus sabdariffa L. can be used in the health sector. The chemical content contained in rosella petals are polyphenols, saponins, tannins, and flavonoids consisting of flavonol and anthocyanins (Kusparmanto et al., 2024). This article aims to show and describe the effects on antiinflammatory Hibiscus sabdariffa L based on scientific literature. Therefore, rosella possesses a range of beneficial properties, including antiseptic, diuretic, anti-inflammatory, antibacterial, and antioxidant effects. These qualities make it a valuable natural remedy for various health conditions. Additionally, rosella has the potential to enhance the body's immune system, contributing to overall health and well-being by supporting the body's ability to fight off infections and maintain balance (Unita & Singarimbun, 2018). Based on the description above, researchers want to analyze further the study of the potential of chemical compounds of rosella flower extract (Hibiscus sabdariffa L.) as an antiinflammatory.are medicinal plants that grow in tropical and subtropical countries such as Saudi Arabia, India, Thailand, Malaysia, and Indonesia. The use of Rosella flowers in Indonesia is not yet very popular, however, in other countries it is used in the field of medicine. Rosella in Nigeria is often used for various treatments such as lowering pressure (antihypertensive), antiseptic, diuretic, lowering blood sugar (hypoglycemic), laxative, preventing the formation of kidney stones, antihelmintic, treating coughs and antibacterial, while in Thailand rosella tea is believed to lower cholesterol (Suniarti et al., 2022). Natural materials can be used as an alternative as the prevention method.(Kusparmanto et al., 2024)

From the explanation above, the authors assume that there is an effect of adduction of rosella extraction petal on bone repair. The purpose of this research is to see the composition and content of the bioactive compound of rosella petal extract which can be used as alternative material to accelerate the growth of alveolar bone. The study aims to see the contents of the compound and bioactive substances, as well as the amount contained in the gel and injection of Rosella petals, extract that can accelerate the remodeling process of the alveolar bone.

METHOD

This paper is arranged by collecting various relevant academic sources. The sources collected from this paper include books and various scientific journals, which are obtained from credible databases such as EBSCO and Google Scholars. There are several keyword searches used from various relevant sources in writing this paper, such as "rosella", "Hibiscus sabdariffa L.", "bone repair", "bone healing", and also "bone remodeling". Specific inclusion criteria were

used to select literature in writing the paper; the literature used must be published in the period 2017 to 2022, with the results of sources used are valid and the literature used has the latest information. In addition, the language used in searching for sources for this paper must be in Indonesian or English. In writing this paper, research sources must be related to the topic effectiveness of rosella on bone repair, ensuring that the search for these sources must be more selective with the aim that the paper presented has strong literature sources with topics related to effectiveness of rosella on bone repair.

RESULT

The results are obtained from 25 reference libraries in writing this paper through a comprehensive search. Further analysis of the reference libraries are obtained according to the inclusion criteria and exclusion criteria to achieve relevant sources relevant to the topic. Additionally, from the results of analyzing the sources obtained and according to the established criteria, there are 20 references that met the criteria, while 5 others are eliminated from the bibliography. The reason is the year of publication is more than 5 years ago, making it not relevant to the current paper. Strict evaluation and careful analysis of the sources found were carried out to obtain credible sources for research in writing this paper. Explanations of several journals obtained are summarized in the following table 1.

Table 1. List of references and summary (Majeed & Ghani, 2018; Porth, 2011).

D (D.C. At 15 (1 1 C. 1		a 1	n 1.
Reference	Aim	Method	Sample	Result
Idrus Erik	То	Bone	30 8-	10%
et al	conduct	damage	week-	rosella
(2020)	an in	repair in	old	extract
	vivo	both	mice	resulte
	study to	models	weighin	d in a
	determin	was done	g 20 -	decreas
	e the	by	25	e in

effect of	applying	grams	bone
two	rosella	and	damage
concentr	extract	rosella	in the
ations of	with a	flowers	calvaria
rosella	concentra	extracte	bone in
flower	tion of	d with	the
extract	5% and	ethanol	post-
on	10% on	in 5%	ligation
alveolar	the	and	group,
bone	damaged	10%	which
destructi	bone area	prepara	showed
on using	before	tions.	the
a	bone		anti-
periodon	damage		inflam
titis	induction		matory
model in	with		and
mice	ligature		anti-
with	(pre-		bacteria
ligature	ligature)		1
wire	as a		potenti
applicati	preventiv		al of the
on on the	e effect		extract.
maxillar	and		
y molar	histologic		
teeth and	al		
a	analysis.		
calvaria	Then, the		
bone	level of		
destructi	bone		
on model	damage		
with LPS	was		
injection	measured		
into the	using		
calvaria.	micro CT		
	and after		
	three		
	days of		
	ligature		
	placemen		
	t in the		
	periodont		
	itis model		
	as a		

		therapeut		
		ic effect		
Masjeed ss	То	A hole	There	Histolo
et al	evaluate	was	were 24	gical
(2018)	the	induced	animals	findings
	effects of	in the left	divided	reveale
	topical	tibia as a	into	d that
	applicati	control	four	the
	on of	and	groups	develop
	flavonoi	allowed	accordi	ment of
	d	to heal	ng to	the
	extracts	spontane	the	bone
	on	ously,	healing	healing
	experim	whereas,	interval	process
	entally	a second	(3 days,	was
	induced	hole was	1, 2, and	accelera
	bone	induced	4	ted
	defects	in the	weeks)	after
	in rabbit	right tibia	of six	flavonoi
	tibia.	where	animals	d
		topical	each.	applicat
		applicatio		ion. The
		n of		results
		flavonoid		obtaine
		extract		d in this
		was		study
		performe		indicate
		d as an		that
		experime		flavonoi
		ntal site,		d
		and the		extract
		flavonoid		from
		extract		Hibiscu
		was		S
		applied		sabdarif
		with a		fa L. has
		pipette.		the
		The		potenti
		specimen		al
		s were		activity
		fixed in		in
		10%		enhanci
		formalin		ng the
		for 48		bone
	l .		l .	l

hours,		healing
decalcifie		process.
d with a		
formic		
acid		
solution,		
then the		
bone		
tissue		
was		
dehydrat		
ed with		
alcohol		
and		
embedde		
d in		
paraffin.		
5μm		
sections		
were		
prepared		
in the		
usual		
manner,		
and		
stained		
with		
hematoxy		
lin and		
eosin.		
Histologic		
al		
examinati		
on was		
performe		
d using a		
light		
microsco		
pe.		
	l .	

The results obtained in this study in table 1 showed that rosella or *Hibiscus* sabdariffa L extract has flavonoid content, which is potential activity in increasing the

bone healing process, as much as 10% resulting in a decrease in bone damage. And shows the potential for anti-inflammatory and anti-bacterial extracts.

DISCUSSION

Rosella Flower

a. Definition of Rosella Flower

Hibiscus sabdariffa L., also known as rosella flower, is a wild tropical plant belonging to the Malvaceae family. This flower has striking red petals, originating from Asia such as India and Malaysia. Rosella flowers can be used as food and medicine in various countries such as Egypt, China, Thailand, Indonesia, and South America (Wang et al., 2022).

Rosella flower has several synonyms, including Abelmoschus cruentus (Bertol.) Walp., Furcaria sabdariffa Ulbr., Hibiscus Noronha, acetosus Hibiscus cruentus Bertol., Hibiscus fraternus L., gossypifolius Mill., Hibiscus Hibiscus palmatilobus Baill., Hibiscus sanguineus Griff., Hibiscus sabdariffa Rottb, and Sabdariffa rubra Kostel (Nurnasari & Khuluq, 2017).

This plant has many branches, dense leaves, and a height of up to 1 - 2 m. The stem is green or red, depending on the seeds of the plant. Rosella flowers have strong taproots, and the flowers have pale yellow petals (can be pink or red). Flowers usually grow singly in the leaf axils. The petals are at the base of the flower and the fruit is large with colors varying from dark purple to bright red (maybe white) when ripe. The flowers are red to yellow, with a dark center containing a short stalk, and have male and female organs (Nurnasari & Khuluq, 2017). The type of rosella flower leaf is a single leaf that is round and oval, has finger-like leaf veins, a blunt leaf tip, serrated leaf edges, and a notched leaf base (Suwadi et al., 2021). The length of the rosella flower leaf can reach 6-15 cm and a width of 5-8 cm. The roots that support the stem are taproots. The flower

crown is funnel-shaped and consists of 5 petals.¹⁰ The fruit of the rosella flower is oval or round, tapering at the end like a capsule, and is formed 1-2 days after pollination. The rosella plant has kidney-shaped seeds with pointed and hairy corners.(Suwadi et al., 2021)

The length of the seeds is about 5 mm and the width is 4 mm. Each fruit contains 30 - 40 seeds, and the size of the seeds is 3-5 mm x 2-4 mm and is reddish brown(Suwadi et al., 2021).

Rosella flowers or Hibiscus sabdariffa L. have the following taxonomy:(Nurnasari & Khuluq, 2017)

• Kingdom: Plantae

• Subkingdom: Viridiplantae

• Infrakingdom: Streptophyta

• Super Division: Embryophyta

• Division: Tracheophyta

• Subdivision: Spermatophytina

• Class: Magnoliopsida

Superorder: RosanaeOrder: Malvales

• Family: Mavaceae

• Genus: Hibiscus

• Species: Hibiscus sabdariffa Linn

b. Rosella Flower Content

According to the Indonesian Ministry of Health, every 100 g of rosella flowers contains 260-280 mg of Vitamin C, Vitamin D, B1, and B2. In addition, rosella contains high calcium (486 mg/100 g), magnesium, and omega 3. Rosella flower petals also have active ingredients, namely grossypeptin, anthocyanin, glucose hibiscin, niacin, riboflavin, beta carotene, iron, polysaccharides, and flavonoids. Flavonoids is a polyphenol compound that has functions as an anti-inflammatory, anti-oxidant, and anti-carcinogenic, and it can help stimulate bone formation (Ramesh et al., 2021).

Figure 1. Rosella flower leaves (Nurnasari & Khuluq, 2017).

Figure 2. Rosella fruit and flower petals (Nurnasari & Khuluq, 2017).

Flavonoid content is found in various plant foods ranging from fruits and vegetables, herbs and spices, essential oils, and drinks, and has the most potential food components to improve bone health besides calcium and vitamin D. Flavonoids as one class of phytochemicals have the potential to protect against bone loss, most likely related to their anti-inflammatory properties. The flavonoids that have been most widely studied about bone health are isoflavones, especially those from soybeans. Isoflavones, along with flavonoids from other plant foods promise bone health (Weaver et al., 2012).

The most widely studied mechanism of flavonoid benefits for bones is the estrogenic action of phytoestrogens, including soy isoflavones, lignans, and coumesterol. The ability of phytoestrogens to bind to ER or estrogen receptors has a positive effect on bone (Weaver et al., 2012).

The benefits to bone are due to several potential factors, including acid-base balance, potassium or other micronutrients (such as boron or vitamin K), and certain bioactive compounds (Li et al., 2021).

2. Bone Destruction Process

The alveolar bone is an important part of the maxillofacial skeleton, a

connective tissue that supports the teeth, experiences mechanical stress, and undergoes continuous bone remodeling characterized by resorption of damaged bone by osteoclasts, followed by replacement with newly formed bone by osteoblasts (Li et al., 2021; Ramesh et al., 2021).

The fine-tuning of the osteoclastosteoblast balance can produce a tight synchronization of bone resorption and formation, which maintains the structural integrity and homeostasis of bone tissue. Conversely, irregular bone remodeling can lead to pathological osteolysis, in which inflammation plays an important role in driving bone destruction (Li et al., 2021).

Factors involved in bone destruction are mediated by bacteria and the host. Bacterial biofilms induce the differentiation of bone progenitor cells into osteoclasts and stimulate gingival cells to release mediators that have the same effect. Bacterial biofilms and inflammatory mediators can also act directly on osteoblasts or their progenitors, inhibiting their action and reducing their numbers (Takei & Carranza, 2019).

Bone resorption is a complex morphological process associated with the presence of erosion on the bone surface and osteoclasts. Osteoclasts originate from hematopoietic tissue and are formed from the fusion of mononuclear cells. When osteoclasts are active, there is a large increase in hydrolytic enzymes that will be secreted in the ruffled border area where these enzymes damage the organic part of the bone (Takei & Carranza, 2019).

Another mechanism of bone resorption consists of a collection of acidic environments on the bone surface that will result in the loss of bone mineral components. This can be caused by different conditions including protons flowing through the osteoclast cell membrane, bone tumors, or local pressure out through the

secretory activity of osteoclasts (Takei & Carranza, 2019).

Ten Cate (1994) describes the sequence of bone resorption processes as follows:(Takei & Carranza, 2019)

- 1) Osteoclast attachment to the mineralized bone surface.
- 2) Formation of an acidic environmental cover through the action of proton pumps, where the bone is demineralized and the organic matrix is exposed.
- 3) Degradation of the organic matrix that has been exposed with the main elements of amino acids by the action of enzymes released, such as phosphoric acid and cathepsin.
- 4) Destruction of mineral ions and amino acids in osteoclasts.

3. Bone Repair Process

Bone healing depends on the location of the fracture, hematoma formation, and other factors. In children, the bone repair process occurs within 6 - 8 weeks, while in adults it occurs within 10 - 18 weeks(Porth, 2011).

There are 4 stages in bone repair: hematoma formation, fibrocartilaginous callus growth, ossification, and remodeling (Porth, 2011). Hematoma formation occurs on the first to second day after the fracture. Hematoma formation develops from torn blood vessels in the periosteum and adjacent muscles and soft tissues. Damaged blood vessels also cause bone cells to be deposited at the fracture site. In 2 - 5 days, the hemorrhage forms a large blood clot. By the end of the first week, most of the blood clot is organized by blood vessel invasion and early fibrosis. As a result of hematoma formation, clotting factors remain in the injured area to initiate the formation of a fibrin network, which serves as a scaffold for the growth of new fibroblasts and capillary buds. At the same time, degranulating platelets and migrating inflammatory cells release growth factors that stimulate the

proliferation of osteoclasts and osteoblasts (Porth, 2011).

The second stage is the formation of granulation tissue or soft tissue callus. In this stage, fibroblasts and osteoblasts migrate to the fracture site from the adjacent periosteal and endosteal membranes, initiating the reconstruction of the bone. Fibroblasts form collagen that spans the fracture and connects the broken bone ends, some of which differentiate into chondrocytes that secrete a collagen matrix. At the same time, osteoblasts begin to incorporate bone into this matrix. After a few days, a fibrocartilage "collar" becomes evident around the fracture site. The edges of the collar on either side of the fracture eventually fuse to form a bridge, connecting the bone fragments. In less severe fractures, the repair tissue reaches its maximum thickness by the end of the second to third week (Porth, 2011).

Ossification is the deposition of mineral salts into the callus. This stage begins in the third to fourth week of healing. Mature bone gradually replaces the fibrocartilaginous callus and excess callus is resorbed by osteoclasts (Porth, 2011).

Remodeling involves the axial bone of the callus that develops in the marrow space and surrounds the external aspect of the fracture site. When the mature callus provides a load-bearing force, the parts that are not under pressure will be reabsorbed, in this way the callus is reduced in size until the shape and lines of the bone are formed (Porth, 2011).

4. Effect of Rosella Flowers on Bone Repair

Flavonoids can stimulate the proliferation of osteoblast cells into osteocytes by increasing the activity of estrogen receptors and increasing the growth of TGF-1 so that it can stimulate the proliferation of osteoblast cells (Sherman Salim & Mefina Kuntjoro, 2015). Apart from 203 flavonoids, rosella extract also contains

tannin and quercetin compounds which also have an effect on bone repair. Sukmana et al., (2017) stated that tannin compounds can reduce IL-1 β expression and increase BMP-2 during the bone remodeling process. Both of these things greatly influence the bone density process, IL-1 β plays a role in inflammatory cells at the bone resorption stage, while BMP-2 induces the formation of osteoblast cells (Sukmana, Budhy, & Ardani, 2017).

Research by Sok Wong et al., (2020) shows that the quercetin compound can increase new bone formation and reports that this compound is osteogenic or has great potential in increasing bone formation. The alveolar bone remodeling process has an important role in preventing relapse after orthodontic treatment, as in research by Franzen et al., in their research with animals. Bone remodeling is controlled by osteoclast cells that absorb bone and osteoblast cells that produce new bone. Thus, relapse after orthodontic treatment can be prevented with activities that can inhibit bone resorption and stimulate bone formation (Auliadini & Pakpahan, 2024).

Rosella (Hibiscus sabdariffa L.) is an herbal plant that has the potential to treat damage because of its antiinflammatory and antibacterial effects. Specific elements in rosella make it very beneficial for human health, including anthocyanins, polyphenols, niacin, riboflavin, ascorbic acid, calcium, iron, potassium, and magnesium. Rosella also contains delphinidin-3-sambubioside, which can reduce the production of inflammatory mediators, and inhibit osteoclastogenesis. The antibacterial properties of Rosella imply that it can prevent plaque formation, which is the main etiology of bone damage (Idrus et al., 2020).

4.1. Characteristics and Analysis of Flavonoids

Flavonoids, tannins, and quercetin are bioactive compounds with significant roles in supporting bone remodeling processes, including preventing relapse after orthodontic treatment. These components work through complex mechanisms involving the regulation of bone cells, such as osteoblasts and osteoclasts, as well as growth mediators like transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2). Below is a detailed explanation of the characteristics of each compound based on research studies:

Regulation of Estrogen Receptors: According to Sherman Salim & Mefina Kuntjoro (2015), flavonoids enhance estrogen receptor activity, which is essential in supporting osteoblast differentiation into osteocytes. Estrogen receptors play a protective role in bone by reducing bone resorption and promoting new bone formation.

Induction of TGF-β: Flavonoids stimulate the release of TGF-β, which functions to promote osteoblast proliferation, accelerate mineralization, and strengthen the bone matrix. Antioxidant Activity: The antioxidant properties of flavonoids help reduce oxidative stress, a common contributor to bone resorption. Transforming Growth Factor Beta (TGF-β) is a family of multifunctional cytokines that play a critical role in regulating various processes, including biological bone formation, tissue remodeling, immunomodulation, and cellular regeneration. This protein is found in nearly all human tissues and acts as a signaling molecule that ensures balance between tissue damage and new tissue formation. In the context of bone, TGF-B is highly significant for bone homeostasis, new bone formation, and healing after injury. TGF-β is produced by various cell types, such as

osteoblasts (bone-forming cells), fibroblasts, and immune cells. Initially, TGF-β is synthesized in an inactive form (latent) and is later activated by protease enzymes or interactions with extracellular matrix (ECM) components. Once activated, TGF-β binds to specific receptors on the cell surface to initiate signal transduction. TGF-B is a multifunctional cytokine that plays a vital role in various biological processes, particularly in bone formation remodeling. It promotes osteoblast proliferation and differentiation, regulates osteoclast activity, and accelerates mineralization. Its anti-inflammatory and immunomodulatory activities contribute to systemic balance during tissue regeneration. An imbalance in TGF-β activity can lead to conditions such as osteoporosis, fibrosis, or chronic inflammation, highlighting the importance of proper regulation in the body. As a therapeutic target, TGF-β offers significant potential in applications related to bone healing and immunotherapy. Its use in biomaterials and growth factor combinations is particularly promising for enhancing bone regeneration and preventing bone-related diseases (Halloran et al., 2020).

4.2. Characteristics and Analysis of Tannins

Bone health plays a fundamental role in maintaining the structural integrity and functionality of the human body. The continuous process of bone remodeling, involving the resorption of old bone and the formation of new bone, is a dynamic equilibrium essential for preserving bone strength and repairing damage caused by injury or disease. However, disruptions in this balance, often due to inflammation, or other systemic factors, can lead to conditions such as osteoporosis or delayed bone healing. As a result, understanding the molecular and biochemical pathways involved in bone

remodeling has become a critical area of research. Tannins, as phenolic compounds, contribute to bone repair through the following mechanisms:

Reduction of IL-1 β Expression: Sukmana et al. (2017) reported that tannins exhibit anti-inflammatory effects by suppressing IL-1 β , a pro-inflammatory cytokine released by immune cells during the bone resorption phase. Reducing IL-1 β levels helps decrease osteoclast activity, thereby inhibiting bone degradation.

Enhancement of BMP-2: Tannins increase BMP-2 expression, which is critical for osteogenesis. BMP-2 promotes the differentiation of osteoblast precursor cells into mature osteoblasts, essential for forming new bone tissue (Liu et al., 2024).

4.2.1. Reduction of IL-1β Expression

Interleukin-1 beta (IL-1β) is a proinflammatory cytokine produced primarily by activated macrophages and other immune cells. It is a potent mediator of inflammation and plays a critical role in the bone resorption phase of bone remodeling. IL-1β acts by stimulating osteoclastogenesis—the differentiation and activation of osteoclasts, the responsible for bone resorption. Osteoclasts degrade the mineralized matrix of bone tissue by secreting acidic substances and enzymes such as cathepsin K and matrix metalloproteinases (MMPs). In chronic conditions such as osteoporosis inflammatory diseases, elevated IL-1β levels result in excessive osteoclast activity, leading to bone loss and weakening. Tannins, as phenolic compounds, have been shown to suppress IL-1\beta production, thus reducing the inflammatory response. By inhibiting IL-1\beta expression, tannins reduce osteoclast activity and therefore inhibit excessive bone resorption. This suppression of IL-1β not only diminishes bone degradation but also helps to limit the inflammatory milieu that contributes to

diseases like osteoarthritis rheumatoid arthritis, where chronic inflammation disrupts bone homeostasis. Studies bv Sukmana et al. (2017)demonstrate that tannins reduce the expression of IL-1β in experimental models, thereby contributing to a more balanced bone remodeling process (Liu et al., 2024).

4.2.2. Enhancement of BMP-2 Expression

morphogenetic proteins (BMPs) are a family of growth factors within the Transforming Growth Factor Beta (TGFβ) superfamily, known for their critical role in bone formation. BMP-2, in particular, is a key osteogenic factor that promotes the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. the responsible for new bone formation. BMP-2 activates several intracellular signaling pathways, particularly the Smad and non-Smad pathways, leading the transcriptional activation of genes like RUNX2 (Runt-related transcription factor 2), which is essential for osteoblast differentiation. Tannins enhance the expression of BMP-2, promoting osteoblast differentiation and proliferation. upregulating BMP-2 levels, tannins facilitate the transition of progenitor cells into fully differentiated osteoblasts. thereby stimulating the formation of new bone tissue. This mechanism is particularly important in the repair of bone fractures or during periods of increased bone turnover, such as in osteoporosis. Moreover, BMP-2's involvement in osteoblastogenesis ensures that bone tissue is properly regenerated and mineralized. Therefore, tannins contribute significantly to accelerating bone healing and improving bone density by promoting osteogenesis. tannins contribute to bone repair and remodeling through their ability to suppress inflammatory cytokines like IL-1β and enhance the osteogenic factor BMP-2. By modulating these key biological pathways, tannins help regulate the balance

between bone resorption and formation, promoting bone health and accelerating healing processes. These findings suggest that tannins may hold therapeutic potential for conditions involving bone loss and impaired bone regeneration, such as osteoporosis, arthritis, and fracture healing (de Oliveira et al., 2024).

4.3. Characteristics and Analysis of Quercetin

Quercetin is a flavonoid compound found in various plants, including roselle, and has been extensively studied for its potential in bone health. Recent research indicates that quercetin can significantly influence bone remodeling through several mechanisms. These include promoting osteoblast activity, inhibiting osteoclastogenesis, providing and antioxidant and anti-inflammatory benefits, making it a promising candidate for therapies aimed at improving bone density and preventing bone loss (Liu et al., 2024).

4.3.1. Promotion of New Bone Formation

Quercetin's osteogenic potential has been highlighted in multiple studies. Research by Sok Wong et al. (2020) demonstrates that quercetin promotes new bone formation by increasing the activity of osteoblasts, the cells responsible for bone Osteoblasts formation. secrete the extracellular matrix, which then is mineralized to form new bone tissue. Ouercetin has been shown to enhance the differentiation and proliferation of osteoblast precursor cells, thus accelerating the formation of bone tissue. By stimulating osteoblast function, quercetin can support bone regeneration, particularly in conditions where bone repair is compromised, such as fractures or osteoporosis. The osteogenic effects of quercetin are partly attributed to its ability to modulate several signaling pathways involved in bone formation. For instance, quercetin can increase the

expression of bone-related genes such as osteocalcin and collagen type I, which are essential for bone matrix synthesis and mineralization. Additionally, quercetin can activate the Wnt/ β -catenin signaling pathway, a critical regulator of osteoblast differentiation and bone formation (de Oliveira et al., 2024).

4.3.2. Anti-Osteoclastogenesis Effects

Osteoclasts are the cells responsible for bone resorption, and their excessive activity can lead to bone loss. Quercetin has been shown to inhibit osteoclast formation and activity, providing an anti-resorptive effect on bone tissue. One of the primary mechanisms through which quercetin achieves this is by modulating the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) pathway. RANKL is a cytokine that binds to the RANK receptor on osteoclast precursors, promoting their differentiation into mature osteoclasts, which then resorb bone. On the other hand, OPG acts as a decoy receptor for RANKL, preventing it from binding to RANK and thus inhibiting osteoclastogenesis. Quercetin has been shown to reduce the expression of RANKL and increase the production of OPG, resulting in a reduction of osteoclast activity and bone resorption. This dual effect—promoting osteoblast activity while suppressing osteoclastogenesis—helps to maintain a healthy balance between bone formation and resorption. By inhibiting osteoclast activity and promoting osteoblast function, quercetin contributes to bone density maintenance and reduces the risk of bone loss in conditions like osteoporosis, where osteoclast activity is typically elevated (Jing Li, Xuxia Wang, Yingzi Wang, Chengyan Lu, Dehua Zheng, 2019).

4.3.3. Antioxidant and Anti-inflammatory Effects

Quercetin is a potent antioxidant that helps protect bone tissue from oxidative damage caused by free radicals. Oxidative

stress plays a significant role in bone degradation by impairing the function of osteoblasts and promoting the activity of osteoclasts. In addition to its antioxidant properties, quercetin also exerts strong antiinflammatory effects. Chronic inflammation is a key factor in various bone diseases, as pro-inflammatory cytokines like IL-1ß and TNF-α can stimulate osteoclastogenesis and suppress osteoblast activity. Quercetin reduces the expression of these proinflammatory cytokines, thereby mitigating the inflammatory response in bone tissue. The anti-inflammatory effects of quercetin are especially relevant in conditions such as rheumatoid arthritis or osteoarthritis, where excessive inflammation leads to joint and bone degradation. By reducing inflammation and oxidative stress, quercetin helps to protect bone tissue from damage and supports the regenerative process. Quercetin's multifaceted role in bone health makes it a promising candidate for therapeutic applications aimed at bone regeneration and maintenance. Through its ability to promote osteoblast activity, inhibit osteoclastogenesis, and protect against oxidative stress and inflammation, quercetin can support the balance between bone formation and resorption, which is essential for maintaining bone integrity and treating conditions like osteoporosis, fractures, and bone-related inflammation. Its potential to improve in orthodontic outcomes treatments further underscores its utility in clinical bone health management (Jing Li, Xuxia Wang, Yingzi Wang, Chengyan Lu, Dehua Zheng, 2019).

CONCLUSION

The results obtained in this study indicate that flavonoid extracts from Hibiscus sabdariffa L. flowers have the potential activity in improving the healing process of bone damage.

REFERENCE

- Auliadini, S. F., & Pakpahan, E. L. (2024).

 Effect of Using Hydroxiapatite-Gelatin
 Gel and Rosella Extract to Prevent
 Relapse In Orthodontic Treaatment
 Moestopo International Review on
 Social, Humanities, and
 Sciences, 4(2), 198–205.

 https://doi.org/10.32509/mirshus.v4i
 2.90
- Kusparmanto, F. S., Pakpahan, E. L., Yuditha, S., & Kusparmanto, L. (2024). Study In The Potential Of Chemical Compounds Of Rosella Flower (Hibiscus Sabdariffa Linn) Extract As A Prevention Of Relapse After Orthodontic Treatment. Moestopo International Review on Social, Humanities, and Sciences, 4(1), 78-87. https://doi.org/10.32509/mirshus. v4i1.71
- de Oliveira, G., de Andrade Rodrigues, L., Souza da Silva, A. A., Gouvea, L. C., Silva, R. C. L., Sasso-Cerri, E., & Cerri, P. S. (2024). Reduction of osteoclast formation and survival following suppression of cytokines by diacerein in periodontitis. *Biomedicine and Pharmacotherapy*, 177. https://doi.org/10.1016/j.biopha.202 4.117086
- Dharma Utama, M., Amiruddin, M., Arpa, S., Ambo Asse, R., Ikhriahni, Muchtar, M., & Susaniawaty, Y. (2019). The content of compound and bioactive substance of the rosella petals extract gel to accelerate the remodeling process of the alveolar bone. *International Journal of Applied Pharmaceutics*, 11(4), 16–18. https://doi.org/10.22159/ijap.2019.v 11s4.35279
- Halloran, D., Durbano, H. W., & Nohe, A. (2020). Developmental review bone morphogenetic protein-2 in development and bone homeostasis. *Journal of Developmental Biology*, 8(3),

28 - 30.

02664-7

04175-1

691013

30(1),

- https://doi.org/10.3390/JDB8030019
 Huang, X., Xie, M., Xie, Y., Mei, F., Lu, X., Li, X., & Chen, L. (2020). The roles of osteocytes in alveolar bone destruction in periodontitis. *Journal of Translational Medicine*, 18(1), 1–15. https://doi.org/10.1186/s12967-020-
- Idrus, E., Tsary, D. A., Setiadi, D. S., Jesslyn, Calfina, N. E., Halim, V. A., Suniarti, D. F., Soedarsono, N., Wimardhani, Y. S., & Yuniastuti, M. (2020). Inhibition of alveolar bone destruction by roselle extract (Hibiscus Sabdariffa L.). *Journal of International Dental and Medical Research*, 13(3), 830–835.
- Jing Li, Xuxia Wang, Yingzi Wang, Chengyan Lu, Dehua Zheng, J. Z. (2019). Isoquercitrin, a Flavonoid Glucoside, Exerts a Positive Effect on Osteogenesis in Vitro and in Vivo (pp. 85–94). Elsevier.
- Liu, T., Zhu, Y., Wang, J., Hong, X., Liu, M., Kong, C., Zhou, R., Li, X., & Yang, L. (2024). Antibacterial effects and mechanisms of quercetin-β-cyclodextrin complex mediated photodynamic on Escherichia coli 0157:H7. *Archives of Microbiology*, 206(11). https://doi.org/10.1007/s00203-024-
- Li, Y., Ling, J., & Jiang, Q. (2021). Inflammasomes in Alveolar Bone Loss. *Frontiers in Immunology, 12*(June), 1–28. https://doi.org/10.3389/fimmu.2021.
- Majeed, S. S., & Ghani, B. A. (2018). Effect of Topical Application of Flavonoids Extract of Hibiscus Sabdariffa on Experimentally Induced Bone Defect. *Journal of Baghdad College of Dentistry*,
 - https://doi.org/10.12816/0046309

33-38.

Nurnasari, E., & Khuluq, D. (2017). Potensi Diversifikasi Rosela Herbal (Hibiscus Sabdariffa L.) untuk Pangan dan Kesehatan. 9(2).

- Omi, M., & Mishina, Y. (2022). Roles of osteoclasts in alveolar bone remodeling. *Genesis (United States)*, 60(8–9), 1–18. https://doi.org/10.1002/dvg.23490
- Porth, C. (2011). Essentials of Pathophysiology: Concepts of Altered Health States (3rd ed.). Lippincott Williams & Wilkins.
- Ramadhan, R. M., Rusdi, B., & Diar, H. (2021).

 Penelusuran Pustaka Senyawa Aktif
 Antimikroba dalam Bunga Rosella
 (Hibiscus Sabdariffa L). *Prosiding Farmasi*, 7(2), 837–842.
- Ramesh, P., Jagadeesan, R., Sekaran, S., Dhanasekaran, A., & Vimalraj, S. (2021). Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. *Frontiers in Endocrinology*, *12*(November), 1–22. https://doi.org/10.3389/fendo.2021.779638
- Suniarti, D. F., Suwandi, T., Putri, S. A., & Kurnia, D. (2022). Potential of Hibiscus sabdariffa L. Calyx (Rosella) extract as antibacterial agent in dental disease: Phytochemical and chemical components profiling. Iournal of Advanced Pharmaceutical Technology Research, 13(3), 202-206. https://doi.org/10.4103/japtr.japtr_6 4_22

- Suwadi, P., Fauzan, R. D., Yulianto, A., Usman, A. N., & Fauzi, A. (2021). Diversivikasi Tanaman Rosella (Hibiscus sadbariffa L.) sebagai Upaya dalam Meningkatkan Kesejahteraan dan Ekonomi Masyarakat Desa Sumberdem, Wonosari, Malang. SEMAR (Jurnal Ilmu Pengetahuan, Teknologi, Dan Seni Bagi Masyarakat), 10(1), 22. https://doi.org/10.20961/semar.v10i 1.42056
- Takei, N., & Carranza, K. (2019). Clinical Evaluation of the Implant Patient. In *Carranza's Clinical Periodontology* (Thirteenth). Elsevier. https://doi.org/10.1016/b978-1-4377-0416-7.00069-x
- Wang, D., Nagata, M., Matsumoto, M., Amen, Y., Wang, D., & Shimizu, K. (2022). Potential of Hibiscus sabdariffa L. and Hibiscus Acid to Reverse Skin Aging. *Molecules*, 27(18), 1–12. https://doi.org/10.3390/molecules27 186076
- Weaver, C. M., Alekel, D. L., Ward, W. E., & Ronis, M. J. (2012). Flavonoid Intake and Bone Health. *Journal of Nutrition in Gerontology and Geriatrics*, *31*(3), 239–253.
 - https://doi.org/10.1080/21551197.2 012.698220